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Plan 

 Hvilken rolle spiller statistikken i å etablere 

kausalitet 

 Metoder: grafiske og kontrafaktiske 

 Kausal inferens: Marginal structural model 

 Medieringsanalyse (Mediation) 

 Liten smakebit fra et stort og voksende felt 
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New England Journal of Medicine, 

Editorial, Jan. 6, 2000, p. 42-49 
 The eleven most important developments in 

medicine in the past millennium 
 Elucidation of human anatomy and physiology 

 Discovery of cells and their substructures 

 Elucidation of the chemistry of life 

 Application of statistics to medicine 

 Development of anesthesia 

 Discovery of the relation of microbes to disease 

 Elucidation of inheritance and genetics 

 Knowledge of the immune system 

 Development of body imaging 

 Discovery of antimicrobial agents 

 Development of molecular pharmacotherapy 
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 From NEJM: The 
origin of modern 
epidemiology: 

 1854, when John 
Snow demonstrated 
the transmission of 
cholera from 
contaminated water 

 The majority of 
people who got ill 
used the Broad Street 
Pump in London's 
Golden Square 

 He removed the 
pump handle from the  
polluted well and the 
spread of the disease 
stopped. 

The original Broad Street pump 
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 From NEJM: 

 Earliest clinical trial in 1747 

 Scurvy (Serious disease: 
Magellan lost 80% of his 
men from scurvy) 

 James Lind treated 12 
scorbutic ship passengers 
on a British navy ship with 
cider, an elixir of vitriol, 
vinegar, sea water, oranges 
and lemon 

 Those who got oranges and 
lemon did not get ill 

 Supply of lemon juice 
eliminated scurvy from the 
navy 
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So, it is all about causality 

 Statistics is important because it is conceived as 
contributing to a causal understanding which is 
needed in prevention and treatment of disease. 

 Statistics can indicate causality even in the 
absence of a mechanistic understanding.  
 Treatment of scurvy far ahead of the knowledge of 

vitamin C 

 John Snow: 20 years ahead of Pasteur 

 Going to modern times next: Causality and 
statistics – a happy couple? 
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Modern breakthrough based on statistics: 

Sleeping position influences risk of crib death 

Crib deaths in Norway 1986-2003 
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Sudden infant death syndrome (SIDS) 

 The risk of SIDS is strongly increased  (RR up to 

13) when the infant is sleeping on its stomach 

compared to sleeping on its back. 

 This is simple because 

 An intervention could be conceived and was easy to 

carry out in practice 

 The effect was immediate 

 The effect was very strong 

 None of these conditions normally hold in 

epidemiology 
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Lancet 2010; 376: 

1741–50 

Proximal colon 

Distal colon 

Mechanistic understanding vs 

statistical documentation 

 Often an effect would be expected on the basis of 

mechanistic understanding, but does not show up 

in statistical studies 

 According to mechanistic understanding intake of 

antioxidants should be good for you. It prevents 

oxidative stress that might be damaging. 

However, statistical studies show very little effect of 

antioxidants either in food or supplements (and existing 

effects are often negative) 
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What is causality 

 Aristoteles – four concepts, we 
mention two: 

 Causa efficiens: the efficient cause 
that produces change. This is the 
modern concept of science. 
 The father is the efficient cause of the 

child 

 Causa finalis: the purpose, 
(formålet). Causa finalis is not an 
accepted idea of modern natural 
science. 
 The purpose (final cause) of taking 

walks is to improve your health 

Aristoteles (Rafael) 

from Wikipedia 
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Taken 

from 

Pearl 

http://no.wikipedia.org/wiki/Bilde:Aristotle_by_Raphael.jpg
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Philosophical aspects of causality 

 First discussed seriously by Hume. 

 Stressing empirical view of causality: Causality is the 
“constant conjunction” between events 
 E.g. water "causes" fire to be extinguished  

 Hume was strongly opposed to a mechanistic 
understanding of causality 

 Hume 1748: “We may define a cause to be an object 
followed by another, and where all the objects, similar to 
the first, are followed by objects similar to the second. Or, 
in other words, where, if the first object had not been, the 
second never had existed.” 

 Second part points to counterfactual causality 
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Immanuel Kant’s view of causality 

 Hume inspired Kant 

Causality is a category 

for experiencing 

reality, just like time 

and space 

 But: “Das ding an sich” 

is unknown! 

Many major 

philosophers have 

thought that we cannot 

experience true reality 

 

1724-1804 (Wikipedia) 

Questions 

 Why is causality important in medicine? 

 How can statistics say something about 

causality? 

 Why have philosophers struggled with the 

causality concept? 

 

 

15 

Causal inference 

 

 No magic wand: 

 

 

 But, a way of 

thinking: 
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Going to modern times: 

Statistical approaches to causality 
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 Directed acyclic graphs – DAGs 

 Mathematical definition of causality. 

 Causality is defined by intervention 

 Notice the importance of interventions in the historical examples 

 Developed by Pearl and others. Inspired by Trygve Haavelmo 

(Norwegian recipient of Nobel prize in economics in 1989) 

 Counterfactual causality 

 Distinguishing actual and counterfactual world. 

 Developed mainly at Harvard university by Robins, Rubin, 

Hernán and others. Nobel prize in economics (Heckman, 2000) 

 Granger causality 

 Based on prediction. Developed in econometrics. Increasingly 

used in neuroscience 

 Nobel prizes to Granger (2003), Sims, Sargent (2011) 

First approach: Causal DAGs 
DAG: Directed acyclic graph 

 Doing versus seeing: 

Pearl’s do-calculus 

has become a major 

tool in epidemiology 

and other fields. 

Extensive 

mathematical theory 

for calculating causal 

effects. 

 Do-operator: 

 P(y | do(x), z) 
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http://en.wikipedia.org/wiki/Image:Kant_2.jpg
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Seeing vs doing (Pearl) 

 Pearl makes a fundamental distinction between 

seeing and doing. Causality is about doing, 

while most statistical data is about seeing 

 Seeing and doing may coincide in experiments 

because of the ability to control the setting. The 

“big” experiment in medicine is the randomized 

clinical trial where the effect of doing is apparent 
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Registries contain data on 

seeing only, and not doing 

 We want to say something about the effect of 

intervention. BUT: the registry only contains a 

description of what has happened, there is no 

information about what could have happened if one 

acted differently. Therefore, you can’t (directly) say 

anything about the effect of intervention 

 This is the case for observational data in general 

 Still, causal inference can help us if we collect enough 

data and the right type of data… 
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Intervention is fundamental in 

biostatistics 

 The final aim of medical research is to intervene 

(either to treat or to prevent disease). 

 When reading papers or listening to talks in medical 

research you should look for the interventions 

lurking behind. 

 Important question: Most data are just “seeing”. 

Can we deduce «doing» from «seeing»? 

Well, sometimes by careful analysis 

21 

Graphical models 

 Graphical models with arrows and boxes 

are common. However, Judea Pearl has 

lifted them to a new level 

 A number of rules for evaluating graphs 

can be defined 

 These are applicable in practice as shall 

be demonstrated 
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Directed acyclic graph – DAG 

 Graph with arrows, where you never return to the same 

node 
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A 

U 

Y 

L 

Outcome 

Confounder 

Treatment / 

Risk factor 

Mediator 

Collider: where two or more arrows meet 

Statistical association 

 If A and Y are associated, then 

this is compatible with four 

different types of causal 

relationship: 

 Direct causation 

 

 Reverse causation 

 

 Confounding 

 

 Collider effect (selection) 
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A Y 

A Y 

A Y 

U 

A Y 

S 

Examples: 

 

Smoking/ 

Lung cancer 

 

 

 

 

 

 

 

Heart 

disease / 

cancer 
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The following rules decide whether 

a path is open or closed 

1. A path with colliding arrows is closed 

(→←). If there are no colliders the path is 

open. 

2. To conditon on a non-collider closes the 

path. 

3. To condition on a collider (or descendant 

of a collider) opens the path 
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What do we mean by “to 

condition on” 

 We mean e.g. to include a variable in the 

regression. 

To include a confounder is usually ok 

To include a collider is dangerous 

 However, a collider may not be avoided if 

it represents inherent selection in the data 
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Keep causal paths open and 

non-causal paths closed 
 Example (Hein Stigum): red arrow is causal, black path 

is not causal (backdoor path). Conditioning on age (or 

obesity) blocks the back-door path 
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Vitamin E 

Age 

Birth defects 

Obesity 

Exercise (Hein Stigum) 

 We want the 

causal effect of 

physical activity 

on CHD 

(coronary heart 

disease). What 

should we adjust 

for? 

28 29 29 

Birth defects. Adjustment for confounder? 
Source: Hernán et al, Amer. J. Epidem. 2002, 155, 176-184 

 When estimating the effect of E on D, shall you adjust for C? 

 No, one should not adjust for a collider. 

 Case-control study on folic acid supplementation and neural tube 
defects. Adjusted OR: 0.80 (0.62, 1.21), non-adjusted OR 0.65 
(0.46,0.94) 
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Oestrogen and endometrial cancer 

 Partly from Robins (2001). 

 Does oestrogen supplements 
increase the risk of 
endometrial cancer? 

 Use case control study 

 Assume no effect of oestrogen 
on cancer 

 Will statistical analysis still 
show an effect of oestrogen 
on cancer? That is: Will there 
be bias? 

 

A 

E 

C 

B 

C – cancer 

A – ascertainment 

B – bleeding 

E – oestrogen 
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A 

E 

C 

B 

E 

C 

B 

Conditioning on 

ascertainment 

and not on 

bleeding 

Conditioning 

also on bleeding 

A 

Questions 

 What is a causal path? 

 When is a path non-causal? 

 How do we close a non-causal path with a 

confounder? 

 Should we adjust for a collider? 
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When is a DAG causal? 

Two views 

 Robins and Hernán: A DAG is causal when 

1. Lack of an arrow can be interpreted as lack of direct 

causal effect 

2. All common causes, even if unmeasured, of any pair 

of variables on the graph are themselves on the 

graph 

Note: this requires a concept of direct cause 

 Pearl: A DAG becomes causal if intervening on 

a node has the effect of removing all arrows into 

the node while the DAG is otherwise unchanged 
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Directed acyclic graph – DAG 

 Graph with 

arrows, 

where you 

never return 

to the same 

node 

 Intervention: 

all incoming 

arrows are 

removed 
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A 

U 

Y 

L 

A 

U 

Y 

L 

Intervening on L 

Outcome 

Confounder 

Treatment 

Mediator 

DAGs are useful 

 DAGs are a useful way of formulating prior 

causal ideas and judging their 

consequences 

 A warning: Causal ideas are usually rather 

vague and may not easily match the 

precision of the mathematical analysis of 

DAGs developed by Pearl and others. 
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The second viewpoint: 

Counterfactual worlds 
 Increasing importance in epidemiology. (Rubin, Robins, 

Hernán at Harvard University) 

 Example: Imagine one actual world where you do smoke 

and a counterfactual one where you don’t and everything 

else is equal 

 But you just observe one! 

 The causal effect can be defined as the difference 

between the result in the actual and the counterfactual 

world. 

 Normally this is not observable, but can be estimated 

from data given certain assumptions (like no 

unmeasured confounder) 

 
36 
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Counterfactual causation vs. association 

(from Miguel Hernan) 

How do we  

get from 

association 

 to causation? 
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Basic problem of epidemiology 

 To get from the observation a statistical 

association 

 to a valid counterfactual statement 

Defining causal effects 

 Calculation on unobservable quantities 

(notice unobservable, not just unobserved) 

– Rubin, Robins  

 First defining causal effects, and then 

seeing if they can be estimated 

(approximately) 

 This cannot be covered here, but we shall 

look at an application 
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Questions 

 What are the two definitions of causality 

that we focus on here? 

 Why do we consider more than one 

version of the concept? 
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Randomised clinical trials 

 The established solution to the confounder problem. We create both a 

factual and a counterfactual world 

 One of the great pillars of medical research. An unrivalled source of 

reliable information. Thousands of clinical trials carried out every year.  

 But limitations: very many exclusions (children e.g.), could be distant 

from clinical practice, extremely expensive (the development of a 

successful medication costs 1 billion dollars) 

 Clinical trials become unethical once a secure effect has been 

established 

 Increasingly data are collected in clinical registries, could they be 

used in addition? Or should all these data go to waste? 
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Can randomized trials be simulated 

from non-randomized data? 

 Medical treatments: Large HIV cohorts in the US, UK and 
Switzerland have been used as a testing ground for new 
methodology. Harvard researchers at the forefront. We cooperate 
closely with the Swiss HIV cohort 

 The HIV cohorts are models for data registries that can be used for 
drawing causal conclusions. Data are collected at fixed times, and not 
only when clinical events occur. Model for quality registries? 

 Epidemiology: Hernán et al, Epidemiology 2008;19: 766–779, 

analyzed the effect of Postmenopausal Hormone Therapy on 

Coronary Heart Disease. There has been a discrepancy between 

clinical trials and epidemiological studies. This disappears when the 

epidemiological studies are analyzed by mimicking the design of a 

randomized trial 

 Conclusion on treatment effects from non-randomized studies may 

be feasible 
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Swiss HIV cohort data 
 An ongoing multi-center research project following up 

HIV infected adults aged 16 or older. 

 Data goes from 1996, when the highly active anti-

retroviral treatment (HAART) became available in 

Switzerland, to September 2003. The data are organized 

in monthly intervals, with measures of CD4 count,  

 viral load (HIV-1 RNA) and other blood values, together 

with variables describing sickness and treatment history. 

 The end point of interest is AIDS or death 

 77 838 person-months of observation, 2161 individuals, 

observed over minimum 1 and maximum 92 months 

 This dataset has already been analyzed using MSMs 

[Sterne et al. 2005] 43 44 

Time-dependent confounding 

C 

Y X 

C 

Y X 

Standard confounding 
Time-dep. confounding 
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Time dependent confounding: 

HIV example 

 When analyzing 

treatment effects on 

HIV, variables such as 

CD4 count (a measure 

of immune status) are 

time dependent 

confounders 

 Such confounding 

could be present when 

a covariate, affected by 

past exposure, is both 

a predictor of the future 

exposure and the 

outcome 
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Notice the left arrow goes in both 

directions. This is not a DAG, but 

a local dependence graph. The 

feedback cannot be understood 

without considering time. Local 

dependence tells us how 

processes influence one another 
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Solutions to time-dependent confounding 

 One solution is given by the marginal structural 
model (MSM) proposed by James M. Robins 
 The confounding is handled by inverse probability of 

treatment weighting (IPTW) and inverse probability  of 
censoring weighting (IPCW) 

 Example: If there are fewer men than women in a 
study we can weight up the men to get a fair 
comparison 

 The MSM uses a sophisticated version of this 

 An alternative, called sequential Cox regression 
is developed by Gran and coauthors. 
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The sequential Cox approach 
Gran et al, 2009 
 Mimic a sequence of randomized clinical trials (RCTs) 

based on each time period (month) of treatment start 

 Average over all mimicked RCTs to find an overall effect 
estimated by composite likelihood 

 Consider only individuals starting treatment in a certain 
time interval as the treatment group. Analysis start at the 
starting point of this interval 

 Individuals still not on treatment in this interval serve as 
the control group – if they start treatment on a later stage 
they get censored (artificial censoring - Hernán) 

 Dependent censoring? Solution: inverse probability of 
censoring weighting 

 Adjust for covariates at baseline and at the start of the 
mimicked RCT (using for instance a Cox model) 

48 
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Results from overall analysis 

Estimated hazard ratio of HAART vs. no treatment. The three 

first rows correspond to results from Sterne et al (2005) 
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What is the issue here?  

 Can we analyze treatment effects from non-

randomized data? 

 Yes, we can (if we have the right data) 

 Time-dependent confounding will be an issue 

 This will be increasingly important when data 

from hospitals and medical practices become 

more available 

 It is called comparative effectiveness research 

 It is likely to be one of the major statistical 

challenges in medical research 50 

http://dallaslouis.net/?p=609 

Assumptions 

 Positivity 

 No unmeasured confounders 

 Design aspects: systematic follow-up 

Must not only register those with events 

leading to contact with the hospital. Must 

know the development for the others as well 
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Questions 

 What is the difference between time-

dependent confounding and ordinary 

confounding? 

 Why is time-dependent confounding more 

difficult? 

 Which are the two approaches we 

mentioned for analyzing it? 
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Mediation 

 Can we understand mechanisms 

by using statistics? 

 Path analysis (Wright, 1921) 

introduced the idea of direct, 

indirect and total effects and 

presented a simple calculus for 

these effects based on linear 

regression models. 

 A lot of recent and sophisticated 

development of these ideas in the 

causal inference literature 
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Outcome 
Treatment 

Mediator 

How much of the effect passes 

directly from treatment to 

outcome (direct effect) and 

how much passes through the 

mediator (indirect effect)? 

Mediation: Cholesterol treatment 
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Mediation and 

confounding. Can 

we estimate the 

direct effect of statin 

on coronary heart 

disease? 

Confounders 

between mediator 

an outcome may 

give a false 

impression of an 

increased indirect 

effect 
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Example 

 Psychotherapy: It is 

well documented that 

therapeutic alliance 

appears to be a 

mediator. However, 

there is an obvious 

possibility of 

confounding effects 

 Which type of effects 

could that be?  

Psycho- 

therapy 
Outcome 

Therapeutic 

alliance 

Confounder 
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Dynamic path analysis for survival 

data 

 First, assume a basic causal structure between 
the variables 

 Carry out a set of linear (or additive) regression 
analyses for each node in the graph at each 
time point where an event occurs, conditioning 
on parents and baseline covariates 

 Find the estimated direct and indirect effects by 
multiplying the estimated coefficients belonging 
to the arrows along each path 

 Direct and indirect effects as functions of time 

 Assume “no unmeasured confounders” 

 

Direct and indirect effects for survival data 
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Dynamic Path Analysis in Life-Course 

Epidemiology, Michael Gamborg*, Gorm 

Boje Jensen, Thorkild I. A. Sørensen, 

and Per Kragh Andersen, American 

Journal of Epidemiology, DOI: 

10.1093/aje/kwq502 

Dynamic path analysis with time effects 

(Generalizing standard path analysis) 

Conclusion in paper: 

Baseline BMI has a strong direct effect on 

CHD, and just very slight indirect effects 

via blood pressure 

Direct and total effects of 

baseline BMI 
 To which extent is the 

effect of baseline BMI 

on CHD mediated 

through later systolic 

blood pressure? Solid 

thick line indicates total 

effect, while thick 

dotted line shows the 

direct effect 
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Conclusion in paper: 

Baseline BMI has a strong direct effect on 

CHD, and just very slight indirect effects 

via blood pressure 

Questions 

 Why are we interested in mediation? 

 What kind of confounding might present a 

difficulty when analyzing mediation? 
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Summary 

 Causal inference is a large and complex area 

 It is no magic tool, but still has a lot of promise 

 Causal inference more and more becomes the 

norm of analysis and presentation in an 

international epidemiological setting 

 Whether we can do causal inference depends 

on how the data are collected. The HIV cohorts 

are a good example 

60 
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